NOTATION

P, pressure; A, amplitude of the concentrator displacement; f, frequency; I, energy intensity of the ultrasonic oscillations; d, inner diameter; Δ , wall thickness of the capillary tube; δ^* , magnitude of the effective gap; ρ , density; μ , coefficient of dynamic viscosity; c, speed of sound in air.

LITERATURE CITED

- L. I. Sedov, Dimensional Analysis and Similarity in Mechanics [in Russian], Nauka, Moscow (1977).
- 2. N. P. Migun and P. P. Prokhorenko, Inzh.-Fiz. Zh., 34, No. 5 (1978).
- 3. G. Huntley, Dimensional Analysis [Russian translation], Mir, Moscow (1970).

SPEED OF ULTRASOUND IN WATER OVER A WIDE RANGE OF PRESSURE AND TEMPERATURE

A. M. Mamedov

UDC 534.22

Experimental data are used to derive a formula for determination of the speed of sound in water over a wide range of state parameters.

The speed of sound in water was studied over a wide range of temperature and pressure in [1], which presented its experimental results in the form of a table for the pressure range of 3-30°C at pressures to 70 MPa, and from 75 to 374°C for pressures to 50 MPa. As the authors noted, the method proposed therein allows determination of the speed of sound in water with quite high accuracy.

The present author has attempted to use the experimental data of [1] to define the speed of sound in water as an analytical function of temperature and density.

The speed of sound in liquid n-alkanes [2] has been described by a formula

$$u = u_{\rm s} + B\left(\rho - \rho_{\rm s}\right). \tag{1}$$

Tests showed that the speed of sound isotherms in water as a function of $(\rho - \rho_s)$, according to Eq. (1) for 11 isotherms (0, 10, 20, 30, 100, 130, 150, 200, 250, 300, and 350°C) presented in the study, were straight lines. The ρ values for these isotherms at corresponding pressures, presented in Table 1, were calculated from the equation of the isotherm [3]

$$\frac{pv}{RT} = 1 + B\rho + E\rho.4 \tag{2}^*$$

It should be noted that the specific volumes calculated with Eq. (2), as is evident from Table 2, agree quite well with the tolerances of the International Table for water and water vapor [4].

The saturated water densities were taken from [4], since Eq. (2) does not provide the required accuracy for ρ_S at high temperatures.

Commencing from the linearity of the isotherms, according to Eq. (1), the least-squares method was used to find the speed of sound values u_s ' for saturated water and the acoustical coefficient B for all 11 isotherms.

Considering the complex form of the curves $u_s' = f(t)$ and $B = \varphi(t)$ shown in Fig. 1, it was necessary to employ polynomials for their description with satisfactory accuracy. These polynomials are easily solved by a Horner type $\Sigma a_1 t^1$ system. Seventh-order polynomials were

*For water, $R = 4.6151 \text{ bar} \cdot \text{cm}^3/\text{g}/\text{deg}$.

M. Azizbekov Azerbaidzhan Institute of Petroleum and Chemistry, Baku. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 36, No. 1, pp. 156-160, January, 1979. Original article submitted December 28, 1977.

[]]	t = 100°C	sec	÷	1544 1554 1554 1566 1567 1597 1597 1597 1607 1617 1617	50°C	575 585 585 585 585 672 815 908 979 979
mental Data of		n, m/	+[1:]	1554 1576 1576 1576 1596 1606 1615 1615		584 584 584 584 584 814 864 982 982 982
		su−o	(2)-[4]	0 2,123 4,818 7,084 9,311 9,311 11,498 13,646 15,794 17,864 17,864	1=3	0 2,885 53,007 70,679 85,366 98,013 98,013 18,711
		p. MPa		5,0968 10,872 15,769 15,769 20,668 25,566 30,465 33,362 35,362 50,065		<i>P</i> ^s 16, 753 20, 671 25, 569 30, 466 35, 364 35, 364 165, 1631 15, 1631
kperi	$t = 30^{\circ}C$	/sec	Ξ	1504 1513 1513 1513 1553 1558 1558 1558 1558		908 912 19 972 932 19 972 972 19 11173 972 19 11173 972 19 11173 1173 11173 11173 11173 11173 11173 11173 11
th B		n, m	[1]*	1518 1550 1550 1567 1567 1567 1567 1567 1567 1567 1567		910 972 972 009 074 110 110 110 110 110 110 110 110 110 11
L) wi		p-p_s	(2)-[4]	$\begin{smallmatrix}&0\\&2,190\\&4,338\\&6,487\\&6,487\\&6,487\\110,705\\113,176\\115,207\\117,229\\221,183\\223,127\\25,011\end{smallmatrix}$	300°C .	
3q.			P. MPa	$\begin{bmatrix} p_s \\ 5,0931 \\ 9,888 \\ 9,888 \\ 14,787 \\ 24,582 \\ 30,459 \\ 35,357 \\ 40,254 \\ 50,946 \\ 55,946 \\ 55,946 \\ 55,746 \end{bmatrix}$	1 = 3	$\begin{bmatrix} 1, 067 \\ 5, 677 \\ 15, 073 \\ 331, 505 \\ 332, 505 \\ 532, 748 \\ 545 \\ 522, 273 \\ 64, 305 \\ 64, $
by	t = 20°C	/sec	(1)	1477 1477 1496 1505 1505 1533 1533 1533 1547 1553 1563 1579		Ps 874 771 771 771 771 771 7667 7667 7667 76
lated		n, m	ť1] *	1500 1501 1503 1544 1545 1545 1546 1556 1565		200232022 20055 2005 2005 2005 2005 2005
alcu		°d−o	(2)-[4]	0 2222 4849 7066 11,373 13,481 15,581 15,581 17,651 17,651 17,655 25,658 225,658		1330 1343 1363 1363 1379 1379 1379 1442 1442 1442 1442 1442 1442
ter (p. MPa		$\begin{array}{c} p_{s} \\ 5,0958 \\ 10,870 \\ 115,768 \\ 30,461 \\ 35,360 \\ 50,669 \\ 50,669 \\ 69,669 \end{array}$	n	
Comparison of Speed of Sound in Wat	l = 10°C	sec	Ξ	1442 1451 1451 1462 1470 1487 1487 1487 1504 1512 1512 1512 1560	t = 200°C	
		u, m/	£1]*	1455 1455 1464 1472 1489 1497 1497 1505 1513 1513 1547 1564		22,641 0,346 13,738 26,512 26,
		0-0 ⁸	(2)-[4]	0 5132 7427 11,928 14,144 16,332 18,481 18,481 18,481 18,481 18,481 22,700 26,839 30,863		<i>P</i> ^s 0.870 5,777 5,777 5,777 5,563 0,460 0,460 0,255 0,255
		p, MPa		$\binom{n_{s}}{25,0923}$ 10,867 15,764 25,560 33,458 33,458 33,458 55,666 59,666 69,666		
	D° 0=1	sec	Ξ	1400 1409 1429 1455 1455 1455 1455 1453 1463 1463 1771 1771 1503 1503	t = 130°C	150 151 151 152 152 152 152 152 152 152 152
		/ш 'л	[1]*	1410 1410 1427 1427 1451 1455 1458 1468 1468 1468 1468 1503 1503		1516 1529 1529 1541 1541 1552 1564 1574 1574 1576
		P-P_8	(2)-[4]	0 5,589 8,050 112,873 115,218 115,218 115,218 115,218 115,218 117,561 119,833 24,327 28,702 33,389		0 5,556 8,027 8,027 8,027 10,401 10,401 15,127 17,332 19,658 24,111
TABLE 1.		-	MPa	<i>P</i> ^s 5,093 110,868 115,766 115,766 30,459 35,357 35,357 35,355 50,055 50,640 70,640		5, 0573 10, 872 15, 770 20, 668 20, 668 362 463 362 463 362 463 362 463 362 463 362 463 362 40, 259 50, 063 362 40, 259 50, 063 50, 003 50, 000 50, 00

*u values presented are rounded.

513 \$ 2 ζ Ē

114

TABLE 2. Comparison of Specific Volume of Water v, cm³/g, Calculated by Eq. (2) with Data of Inter-national Tables [4]

50	2,2195	(2)	1	1	1	ł	1,664	1,555	1,492	1,447	1,412	1,358	1,318
3	1 11 11 11	[4]	1	1	I	1	1,665 2	1,555 2	1,489 3	1,443 3	1,407 3	1,355	1,314
300	2,5862 3,4437	(2)	1	I	!	1,397	1,361	1,333	1,309	1,288	1,270	1,239	1,213
	1 	[4]		1	1	1,397	1,360 1	1,331	1,308 1	1,288 1	1,270 1	1,239 1	1,214
50	B = -3,1575 E = -3,7844	(2)		1	1,2494	1,2409	1,2254	1,2115	1,1987	1,1871	1,1763	1,1569	1,1398
3		[1]			1,2495	1,2409 4	1,2251	1,2111	1,1981 6	1,1868 6	1,1760 6	1,1568 8	1,1398
	B = -3,8567 E = -4,1915	(2)		1	1,1531	1,1482	1,1390	1,1304	1,1223	1,1147	1,1074	1,0940	1,0818
20([4]	1	1	1,1531 3	1,1483 4	1,1399 4	1,1304	1,1224 4	1,1148 5	1,1075	1,0941 5	1,0818 5
150	B = -4.7194 E = -4.7109	(2)	!	1,0902	1,0876	1,0843	1,0780	1,0720	1,0663	1,0608	1,0555	1,0456	1,0363
		[4]	4	1,0903 3	1,0878	1,0846	1,0782 4	1,0721 4	1,0664 4	1,0609	1,0556	1,0456	1,0363
100	B = -5,6116 E = 5,1976	(3)	1	1,0435	1,0414	1,0389	1,0340	1,0292	1.0247	1,0203	1,0161	1,0079	1,0003
		[4]	1	1,0433 2	1,0410	1,0386	1,0336	1,0289	1,0244 4	1,0200	1,0157	1,0076 4	1,0000 4
50	B = -6,3897 E = 5,5767	(2)	1,0121	1,0119	1,0099	1,0077	1,0033	1666'0	0,9950	1166'0	0,9873	0,9800	0,9731
		[4]	1,0121	1,0117	1,0099	1,0077	1,0033	0,9992	0,9951 2	0,9912 3	0,9873 3	0,9800 3	0,9731
l = 0°C	B = -6,3778 E = -3,3810	(2)	1,0002	0,9997	0,9976	0,9951	0,9902	0,9854	0,9809	0,9765	0,9722	0,9642	0,9566
		[4]	1,0002 1	0,9997 2	0,9976 2	0,9952	0,9904 2	0,9856 2	0,9811 2	0,9766 2	0,9723 3	0,9642	0,9566
P. bar				10	33	100	200	300	400	200	009	800	000

Fig. 1. Speed of sound in saturated liquid u_s ', m/sec (a) and acoustical coefficient B, m⁴/kg•sec (b) versus temperature, °C.

TABLE 3. Coefficients of Polynomials $u'_{s} = \sum_{i=0}^{i=7} a_{i}t^{i}$ and $B = \sum_{i=0}^{i=7} a_{i}t^{i}$ for Water

Coeffi- cient	, u _s	В	Coeffi- cient	u's	В
$\begin{array}{c}a_{0}\\a_{1}\\a_{2}\\a_{3}\end{array}$	$140000 \cdot 10^{-2} 455419 \cdot 10^{-5} 364378 \cdot 10^{-7} 688889 \cdot 10^{-12}$	35900.10 ⁻⁴ 25707.10 ⁻⁶ 36566.10 ⁻⁸ 37876.10 ⁻¹⁰	24 25 26 27	945556 • 10 ⁻¹² 516889 • 10 ⁻¹⁴ 118222 • 10 ⁻¹⁶ 104127 • 10 ⁻¹⁹	$\begin{array}{r}23756 \cdot 10^{-12} \\ 83556 \cdot 10^{-13} \\15289 \cdot 10^{-17} \\ 11175 \cdot 10^{-20} \end{array}$

TABLE 4. Parameters of Maximum Speed of Sound in Water

p. MPa	<i>t</i> , ℃	u _{max} , m/sec	P. bar	t, °C	^u max• m/sec
10 20 30 40	77 78 79 80—81 82	1576 1596 1516 1634 1653	600 700 800 900	83 85 86 87 88	1671 1688 1705 1723 1739

obtained, since u_s and B values for eight isotherms from 0 to 350°C in 50°C steps were used to calculate them. The values of the constant polynomial coefficients are presented in Table 3.

Table 1 compares the values of the speed of sound in water calculated with Eq. (1) with the experimental data of [1]. As is evident from the table, Eq. (1) describes the values with a high accuracy, the maximum deviation from the experimental data being 4 m/sec ($\sim 0.2\%$), which is completely acceptable for engineering calculations.

Tests revealed that the polynomials for u_s ' and B constructed from Fig. la,b every 5-10° over the temperature range from 0 to 350°C have no wave-shaped segments. Thus, Eq. (1), as is evident from Table 1, also gives correct results for intermediate temperatures (10, 20, 30, and 130°C).

It should be noted that the expression for the speed of sound may be obtained from differential thermodynamic relationships and the equation of state chosen here, Eq. (2), but will be nonlinear in density. Therefore, the formula used here, Eq. (1), is of an approximate character, but its value lies in the fact that within the state parameter limits considered it transforms a nonlinear dependence into a linear one.

It should also be noted that speed of sound values can be calculated with Eq. (1) up to 100 MPa.

It is to be expected that such extrapolation is justifiable, since for n-hexane* Eq. (1) is valid to $-40p_{cr}$, for water, the corresponding limit is an order of magnitude lower, being only $-4.5p_{cr}$.

It is known that the speed of sound in water at all pressures shows maxima. Our studies show that up to 100 MPa these maxima, as may be seen from Table 4, are located in the temperature range of 75-88°C.

NOTATION

u, speed of sound; u_s ', speed of sound in saturated liquid; B, temperature dependent acoustical coefficient of Eq. (1); ρ , density; ρ_s , density of saturated liquid; p pressure, v, specific volume; T, absolute temperature; B and E, temperature-dependent coefficients of Eq. (2).

LITERATURE CITED

1. A. A. Aleksandrov and D. K. Larin, Teploenergetika, No. 2 (1976).

- 2. A. M. Mamedov, Izv. Vyssh. Uchebn. Zaved., Neft' Gaz, No. 3 (1975).
- 3. A. M. Mamedov, Uch. Zap., Izd. AZINEFTEKhIM, Ser. IX, No. 4 (1971).
- 4. M. P. Vukalovich, S. L. Rivkin, and A. A. Aleksandrov, Tables of Thermophysical
- Properties of Water and Water Vapor [in Russian], Standartov, Moscow (1969).
- 5. N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases, Halsted Press (1975).

^{*}p_{cr} = 30.31 bar [5].